Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zheng-Bo Chen,^a Jun Wu,^a* Pei-Zhi Zhang^b and Dong-Dong Wu^a

^aDepartment of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China, and ^bDepartment of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310012, People's Republic of China

Correspondence e-mail: wujunwjwj@sohu.com

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.003 Å R factor = 0.046 wR factor = 0.136 Data-to-parameter ratio = 16.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl 4-{2-chloro-4-[2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino]phenoxy}benzoate

The title compound, $C_{27}H_{24}ClN_3O_6$, a probable new herbicide, was synthesized by the reaction of 4,6-dimethoxy-2-(methyl-sulfonyl)pyrimidine and methyl 4-[2-chloro-4-(2-hydroxy-benzylamino)phenoxy]benzoate in tetrahydrofuran. π - π Interactions occur between neighbouring benzene rings.

Received 3 March 2006 Accepted 29 June 2006

Comment

4,6-Dimethoxy-2-phenoxypyrimidine and its derivatives have shown remarkable herbicidal activities in recent years (Nezu *et al.*, 1996; Tamaru *et al.*, 1997; Hudson *et al.*, 2002). The title compound, (I), has been prepared as a new herbicide.

The partially overlapped arrangement between adjacent parallel C3-benzene rings and the face-to-face distance of 3.63 (1) Å indicate the existence of π - π aromatic stacking interactions (Fig. 2). Neighbouring molecules are also linked to each other *via* N-H···O hydrogen bonds (Table 1 and Fig. 3).

Experimental

A mixture of methyl 4-[2-chloro-4-(2-hydroxybenzylamino)phenoxy]benzoate (0.75 g, 0.002 mol), 4,6-dimethoxy-2-(methylsulfonyl)pyrimidine (0.43 g, 0.002 mol), and K_2CO_3 (0.55 g, 0.004 mol) in tetrahydrofuran (50 ml) was refluxed for 8 h. After the insoluble substance was removed from the mixture by filtration, the organic layer was evaporated *in vacuo* to give the crude product. Recrystallization of the crude product from ethanol gave colorless crystals (m.p. 387.2–388.0 K).

Crystal data	
C27H24ClN3O6	$V = 1256.8 (10) \text{ Å}^3$
$M_r = 521.94$	Z = 2
Triclinic, $P\overline{1}$	$D_x = 1.379 \text{ Mg m}^{-3}$
a = 10.763 (4) Å	Mo $K\alpha$ radiation
b = 11.066 (6) Å	$\mu = 0.20 \text{ mm}^{-1}$
c = 12.051 (4) Å	T = 298 (1) K
$\alpha = 98.02 \ (3)^{\circ}$	Block, colorless
$\beta = 116.33 \ (3)^{\circ}$	$0.35 \times 0.28 \times 0.18 \text{ mm}$
$\gamma = 94.746 \ (19)^{\circ}$	

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (I) with 40% probability displacement ellipsoids. H atoms are shown as circles of arbitrary radii.

12447 measured reflections 5677 independent reflections 3660 reflections with $I > 2\sigma(I)$

 $\begin{aligned} R_{\rm int} &= 0.025\\ \theta_{\rm max} &= 27.5^\circ \end{aligned}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\rm min} = 0.915, T_{\rm max} = 0.965$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0686P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 0.0343P]
$wR(F^2) = 0.136$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
5677 reflections	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
337 parameters	$\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

		•	
Hydrogen-bond	geometry	(À	°)
inguiogen conta	Seconder,	(<i>.</i>

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O3 ⁱ	0.92	2.30	3.126 (3)	150
$C7 - H7A \cdots O4$	0.97	2.49	2.828 (3)	100

Symmetry code: (i) x, y, z - 1.

Atom H1 was located in a difference Fourier map and refined as riding in its as-found relative position, with a fixed $U_{\rm iso}({\rm H})$ value of 0.08 Å². Other H atoms were placed in calculated positions, with C–H = 0.93 (aromatic), 0.96 (methyl group) and 0.97 Å (methylene group), and were refined in riding mode, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm aromatic}$ and methylene) and $1.5U_{\rm eq}({\rm methyl})$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the National Natural Science Foundation of China (grant No. 20272052) and Zhejiang

Figure 2

 π - π Stacking between parallel C1–C6 and C1–C6ⁱⁱⁱ rings of neighbouring molecules; atoms C3 and C3ⁱⁱⁱ are labelled [Symmetry code: (iii) 2 - x, 2 - y, -z].

Figure 3

The intermolecular hydrogen bondong (dashed lines) in the crystal structure. [Symmetry codes: (i) x, y, z - 1; (ii) x, y, z - 2.]

Natural Science Foundation (Grant No. M203087). We thank Jian-Min Gu for his assistance with the X-ray analysis.

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Hudson, H. R., Wu, J. & Xu, W. L. (2002). Chem. Res. Chin. Univ. 18, 481–490.Nezu, Y., Miyazaki, M., Sugiyama, K., Wada, N., Kajiwara, I. & Miyazawa, T. (1996). Pestic. Sci. 47, 115–124.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Tamaru, M., Masuyama, N., Sato, M., Takabe, F., Inoue, J. & Hanai, R. (1997). Pestic. Sci. 49, 76–84.